Micropatterns Enhance Endothelial Cell Migration Under Flow Conditions

Cardiovascular disease remains the leading cause of mortality among adults in the US. As a result, nearly 600,000 coronary and peripheral vascular bypass graft surgeries are performed in the US each year. To overcome limitations of current gold-standard auto-grafting and synthetic grafting methods, Sharklet Technologies, Inc. (STI) proposes a tissue engineered vascular graft comprised of a Sharklet micropatterned acellular extracellular matrix to enhance graft incorporation via guided endothelial cell migration onto the graft lumen.

阅读更多

Evaluation of a bilayered, micropatterned hydrogel dressing for full-thickness wound healing

Nearly 12 million wounds are treated in emergency departments throughout the United States every year. The limitations of current treatments for complex, full-thickness wounds are the driving force for the development of new wound treatment devices that result in faster healing of both dermal and epidermal tissue. Here, a bilayered, biodegradable hydrogel dressing that uses microarchitecture to guide two key steps in the proliferative phase of wound healing, re-epithelialization, and revascularization, was evaluated in vitro in a cell migration assay and in vivo in a bipedicle ischemic rat wound model.
阅读更多

Micropatterned Endotracheal Tubes Reduce Secretion-Related Lumen Occlusion

When patients are mechanically ventilated, endotracheal tubes have the potential to disrupt normal airway secretion production and clearance. This ultimately results in secretion accumulation within standard endotracheal tubes and leads to numerous complications for the patient. Sharklet has developed two different test models (in vitro and in vivo) to evaluate the ability of Sharklet-micropatterned endotracheal tubes to reduce the accumulation of these secretions and improve patient care.

阅读更多

Micropatterned Protective Membranes Inhibit Lens Epithelial Cell Migration in Posterior Capsule Opacification Model (2015)

During development of the ClearSight IOL, Sharklet researched the effect that micropatterned surfaces have on epithelial cells. After surgery to remove cataracts, an intraocular lens is inserted into the eye. Epithelial cells migrate onto the new lens, resulting in posterior capsule opacification (PCO). A followup surgery uses a laser to remove these migrated cells. The ClearSight IOL would feature a protective ring of Sharklet to prevent the cellular migration and negate the need for the laser procedure. 阅读更多

Surface Micropattern Resists Bacterial Contamination Transferred by Healthcare Practitioners (2014)

Sharklet-patterned adhesive films are designed to be deployed in many environments, including hospitals. This study places Sharklet film in key areas of a simulated hospital room and measured transference between stations.

Environmental contamination contributes to an estimated 20-40% of all hospital acquired infections (HAI). Infection control practices continue to improve, but multipronged approaches are necessary to fully combat the diversity of nosocomial pathogens and emerging multidrug resistant organisms. The Sharklet™ micropattern, inspired from the microtopography of shark skin, was recently shown to significantly reduce surface contamination but has not been evaluated in a clinical setting. The focus of this study was the transfer of bacteria onto micropatterned surfaces compared to unpatterned surfaces in a clinical simulation environment involving healthcare practitioners.
You can find the full paper below.

阅读更多

Bio-Inspired, Engineered Microtopographies Reduce Platelet Adhesion and Activation on Blood-Contacting Materials (2014)

Platelet adhesion and activation are key events in thrombus or clot formation on blood-contacting biomaterials. Thus understanding the complex interactions between biomaterial surface properties and platelets is important for developing vascular access devices that limit thromboembolic events. Medical-grade poly(urethanes) are frequently used in blood-contacting medical devices due to their desirable mechanical properties and high level of hemocompatibility. Moreover, it has been shown that sub-platelet-sized micropatterns reduce platelet adhesion. Based on this evidence, we hypothesized that bio-inspired, antifouling Sharklet™ (SK) microtopographies replicated in biomedical thermoplastic poly(urethane) (TPU) reduce both platelet adhesion and activation compared to smooth (SM) controls.

阅读更多

Micro-patterned surfaces reduce bacterial colonization and biofilm formation in vitro: Potential for enhancing endotracheal tube designs (2014)

Background

Ventilator-associated pneumonia (VAP) is a leading hospital acquired infection in intensive care units despite improved patient care practices and advancements in endotracheal tube (ETT) designs. The ETT provides a conduit for bacterial access to the lower respiratory tract and a substratum for biofilm formation, both of which lead to VAP. A novel microscopic ordered surface topography, the Sharklet micro-pattern, has been shown to decrease surface attachment of numerous microorganisms, and may provide an alternative strategy for VAP prevention if included on the surface of an ETT. To evaluate the feasibility of this micro-pattern for this application, the microbial range of performance was investigated in addition to biofilm studies with and without a mucin-rich medium to simulate the tracheal environment in vitro.

阅读更多

Micro-patterned polyurethane surfaces for reducing bacterial attachment associated with catheter-associated blood stream infections (2013)

Background: Central venous catheters (CVCs) are responsible for approximately 90% of all catheter-related bloodstream infections (CRBSIs). These CRBSIs, commonly caused by Staphylococcus aureus and Staphylococcus epidermidis, are associated with 28,000 deaths per year in the U.S. as well as prolonged hospital stays and increased healthcare costs. A common strategy used to prevent CRBSIs has been to impregnate CVCs with antimicrobial agents, which can be limited by the short duration of efficacy and the potential for contributing to antimicrobial resistance. A novel micro-topography may provide an alternative strategy as it has been shown to reduce bacterial attachment and biofilm formation without the use of antimicrobial agents. This micro-pattern also inhibits bacterial migration, offering the possibility of reducing bacterial access into the bloodstream via the CVC. The objective of this study was to determine the performance of the Sharklet micro-pattern in reducing S. aureus attachment to samples made in the same material as CVCs after whole blood pre-conditioning.