Sharklet Technologies Looks to Shark Skin for Bacterial Protection (InnovatioNews)

InnovatioNews published another profile about Sharklet and the company’s expected growth. Be sure to scroll to the bottom of the article to see an interview with our CEO, Mark Spiecker, where he talks about the company at the Rocky Mountain Life Science Investor & Partnering Conference.

“So much of our technology uses chemicals or heavy metals to prevent bacterial growth,” says Mark Spiecker, who joined the company in 2008 and took over as CEO in 2010 when it moved to the Bioscience Park Center incubator.

“We don’t need that. With our surface, if the bacteria can’t attach, they don’t have the chance to grow. We come at that problem from an entirely new angle.”

Read More

Sharklet Technologies, Inc. Profile (Company Week)

Regional manufacturing publication Company Week dropped by Sharklet to do a profile of the company and our upcoming products.

“There’s a significant market for iPhone cases,” explains Sharklet CEO Mark Spiecker. “Everybody knows what an iPhone case is, and when I walk into a meeting and show him or her our technology it’s a very tangible thing,” he says. He shows the data on how the case repels bacteria based on Sharklet’s patented technologies. Hence a company focused on medical devices and planning to debut its first products this year is starting out with an iPhone case under $30.

Read More

Biomimicry: How the Natural World Can Inspire Your Business (Microsoft Work)

Microsoft’s Work blog wrote a profile about biomimicry and Sharklet.

 

Today, businesses are looking at how nature works to find solutions for human problems. This emergent field is called “biomimicry,” from the Greek bios (life) and mimesis (imitation). In business, biomimicry means innovations inspired by nature, and so far, the greatest business advances in biomimicry have been design oriented. However, Mother Nature is also the Master Organizer of things. Perhaps it’s time to consider her opinion on the way we organize our lives and businesses.

 

Read More

Bio-Inspired, Engineered Microtopographies Reduce Platelet Adhesion and Activation on Blood-Contacting Materials (2014)

Platelet adhesion and activation are key events in thrombus or clot formation on blood-contacting biomaterials. Thus understanding the complex interactions between biomaterial surface properties and platelets is important for developing vascular access devices that limit thromboembolic events. Medical-grade poly(urethanes) are frequently used in blood-contacting medical devices due to their desirable mechanical properties and high level of hemocompatibility. Moreover, it has been shown that sub-platelet-sized micropatterns reduce platelet adhesion. Based on this evidence, we hypothesized that bio-inspired, antifouling Sharklet™ (SK) microtopographies replicated in biomedical thermoplastic poly(urethane) (TPU) reduce both platelet adhesion and activation compared to smooth (SM) controls.

Read More

Micro-patterned surfaces reduce bacterial colonization and biofilm formation in vitro: Potential for enhancing endotracheal tube designs (2014)

Background

Ventilator-associated pneumonia (VAP) is a leading hospital acquired infection in intensive care units despite improved patient care practices and advancements in endotracheal tube (ETT) designs. The ETT provides a conduit for bacterial access to the lower respiratory tract and a substratum for biofilm formation, both of which lead to VAP. A novel microscopic ordered surface topography, the Sharklet micro-pattern, has been shown to decrease surface attachment of numerous microorganisms, and may provide an alternative strategy for VAP prevention if included on the surface of an ETT. To evaluate the feasibility of this micro-pattern for this application, the microbial range of performance was investigated in addition to biofilm studies with and without a mucin-rich medium to simulate the tracheal environment in vitro.

Read More

Micro-patterned polyurethane surfaces for reducing bacterial attachment associated with catheter-associated blood stream infections (2013)

Background: Central venous catheters (CVCs) are responsible for approximately 90% of all catheter-related bloodstream infections (CRBSIs). These CRBSIs, commonly caused by Staphylococcus aureus and Staphylococcus epidermidis, are associated with 28,000 deaths per year in the U.S. as well as prolonged hospital stays and increased healthcare costs. A common strategy used to prevent CRBSIs has been to impregnate CVCs with antimicrobial agents, which can be limited by the short duration of efficacy and the potential for contributing to antimicrobial resistance. A novel micro-topography may provide an alternative strategy as it has been shown to reduce bacterial attachment and biofilm formation without the use of antimicrobial agents. This micro-pattern also inhibits bacterial migration, offering the possibility of reducing bacterial access into the bloodstream via the CVC. The objective of this study was to determine the performance of the Sharklet micro-pattern in reducing S. aureus attachment to samples made in the same material as CVCs after whole blood pre-conditioning.